3.1208 \(\int \frac{a+b \tan ^{-1}(c x)}{x^4 \sqrt{d+e x^2}} \, dx\)

Optimal. Leaf size=179 \[ \frac{2 e \sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d^2 x}-\frac{\sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d x^3}+\frac{b c \left (2 c^2 d+3 e\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{6 d^{3/2}}-\frac{b \sqrt{c^2 d-e} \left (c^2 d+2 e\right ) \tanh ^{-1}\left (\frac{c \sqrt{d+e x^2}}{\sqrt{c^2 d-e}}\right )}{3 d^2}-\frac{b c \sqrt{d+e x^2}}{6 d x^2} \]

[Out]

-(b*c*Sqrt[d + e*x^2])/(6*d*x^2) - (Sqrt[d + e*x^2]*(a + b*ArcTan[c*x]))/(3*d*x^3) + (2*e*Sqrt[d + e*x^2]*(a +
 b*ArcTan[c*x]))/(3*d^2*x) + (b*c*(2*c^2*d + 3*e)*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]])/(6*d^(3/2)) - (b*Sqrt[c^2*
d - e]*(c^2*d + 2*e)*ArcTanh[(c*Sqrt[d + e*x^2])/Sqrt[c^2*d - e]])/(3*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.266089, antiderivative size = 179, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.391, Rules used = {271, 264, 4976, 12, 573, 149, 156, 63, 208} \[ \frac{2 e \sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d^2 x}-\frac{\sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d x^3}+\frac{b c \left (2 c^2 d+3 e\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{6 d^{3/2}}-\frac{b \sqrt{c^2 d-e} \left (c^2 d+2 e\right ) \tanh ^{-1}\left (\frac{c \sqrt{d+e x^2}}{\sqrt{c^2 d-e}}\right )}{3 d^2}-\frac{b c \sqrt{d+e x^2}}{6 d x^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTan[c*x])/(x^4*Sqrt[d + e*x^2]),x]

[Out]

-(b*c*Sqrt[d + e*x^2])/(6*d*x^2) - (Sqrt[d + e*x^2]*(a + b*ArcTan[c*x]))/(3*d*x^3) + (2*e*Sqrt[d + e*x^2]*(a +
 b*ArcTan[c*x]))/(3*d^2*x) + (b*c*(2*c^2*d + 3*e)*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]])/(6*d^(3/2)) - (b*Sqrt[c^2*
d - e]*(c^2*d + 2*e)*ArcTanh[(c*Sqrt[d + e*x^2])/Sqrt[c^2*d - e]])/(3*d^2)

Rule 271

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a + b*x^n)^(p + 1))/(a*(m + 1)), x]
 - Dist[(b*(m + n*(p + 1) + 1))/(a*(m + 1)), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 4976

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Dist[a + b*ArcTan[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/(1 + c^
2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ((IGtQ[q, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m +
2*q + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[q, 0] && GtQ[m + 2*q + 3, 0])) || (ILtQ[(m + 2*q + 1)/2, 0] &&
  !ILtQ[(m - 1)/2, 0]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 573

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n],
x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 149

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[m]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{a+b \tan ^{-1}(c x)}{x^4 \sqrt{d+e x^2}} \, dx &=-\frac{\sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d x^3}+\frac{2 e \sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d^2 x}-(b c) \int \frac{\sqrt{d+e x^2} \left (-d+2 e x^2\right )}{3 d^2 x^3 \left (1+c^2 x^2\right )} \, dx\\ &=-\frac{\sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d x^3}+\frac{2 e \sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d^2 x}-\frac{(b c) \int \frac{\sqrt{d+e x^2} \left (-d+2 e x^2\right )}{x^3 \left (1+c^2 x^2\right )} \, dx}{3 d^2}\\ &=-\frac{\sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d x^3}+\frac{2 e \sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d^2 x}-\frac{(b c) \operatorname{Subst}\left (\int \frac{\sqrt{d+e x} (-d+2 e x)}{x^2 \left (1+c^2 x\right )} \, dx,x,x^2\right )}{6 d^2}\\ &=-\frac{b c \sqrt{d+e x^2}}{6 d x^2}-\frac{\sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d x^3}+\frac{2 e \sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d^2 x}-\frac{(b c) \operatorname{Subst}\left (\int \frac{\frac{1}{2} d \left (2 c^2 d+3 e\right )+\frac{1}{2} e \left (c^2 d+4 e\right ) x}{x \left (1+c^2 x\right ) \sqrt{d+e x}} \, dx,x,x^2\right )}{6 d^2}\\ &=-\frac{b c \sqrt{d+e x^2}}{6 d x^2}-\frac{\sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d x^3}+\frac{2 e \sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d^2 x}+\frac{\left (b c \left (c^2 d-e\right ) \left (c^2 d+2 e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+c^2 x\right ) \sqrt{d+e x}} \, dx,x,x^2\right )}{6 d^2}-\frac{\left (b c \left (2 c^2 d+3 e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{d+e x}} \, dx,x,x^2\right )}{12 d}\\ &=-\frac{b c \sqrt{d+e x^2}}{6 d x^2}-\frac{\sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d x^3}+\frac{2 e \sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d^2 x}+\frac{\left (b c \left (c^2 d-e\right ) \left (c^2 d+2 e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{c^2 d}{e}+\frac{c^2 x^2}{e}} \, dx,x,\sqrt{d+e x^2}\right )}{3 d^2 e}-\frac{\left (b c \left (2 c^2 d+3 e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{d}{e}+\frac{x^2}{e}} \, dx,x,\sqrt{d+e x^2}\right )}{6 d e}\\ &=-\frac{b c \sqrt{d+e x^2}}{6 d x^2}-\frac{\sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d x^3}+\frac{2 e \sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{3 d^2 x}+\frac{b c \left (2 c^2 d+3 e\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{6 d^{3/2}}-\frac{b \sqrt{c^2 d-e} \left (c^2 d+2 e\right ) \tanh ^{-1}\left (\frac{c \sqrt{d+e x^2}}{\sqrt{c^2 d-e}}\right )}{3 d^2}\\ \end{align*}

Mathematica [C]  time = 0.485693, size = 372, normalized size = 2.08 \[ -\frac{\frac{\sqrt{d+e x^2} \left (2 a \left (d-2 e x^2\right )+b c d x\right )}{x^3}+\frac{b \left (c^4 d^2+c^2 d e-2 e^2\right ) \log \left (\frac{12 c d^2 \left (\sqrt{c^2 d-e} \sqrt{d+e x^2}+c d-i e x\right )}{b (c x+i) \sqrt{c^2 d-e} \left (c^4 d^2+c^2 d e-2 e^2\right )}\right )}{\sqrt{c^2 d-e}}+\frac{b \left (c^4 d^2+c^2 d e-2 e^2\right ) \log \left (\frac{12 c d^2 \left (\sqrt{c^2 d-e} \sqrt{d+e x^2}+c d+i e x\right )}{b (c x-i) \sqrt{c^2 d-e} \left (c^4 d^2+c^2 d e-2 e^2\right )}\right )}{\sqrt{c^2 d-e}}-b c \sqrt{d} \left (2 c^2 d+3 e\right ) \log \left (\sqrt{d} \sqrt{d+e x^2}+d\right )+b c \sqrt{d} \log (x) \left (2 c^2 d+3 e\right )+\frac{2 b \tan ^{-1}(c x) \left (d-2 e x^2\right ) \sqrt{d+e x^2}}{x^3}}{6 d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTan[c*x])/(x^4*Sqrt[d + e*x^2]),x]

[Out]

-((Sqrt[d + e*x^2]*(b*c*d*x + 2*a*(d - 2*e*x^2)))/x^3 + (2*b*(d - 2*e*x^2)*Sqrt[d + e*x^2]*ArcTan[c*x])/x^3 +
b*c*Sqrt[d]*(2*c^2*d + 3*e)*Log[x] - b*c*Sqrt[d]*(2*c^2*d + 3*e)*Log[d + Sqrt[d]*Sqrt[d + e*x^2]] + (b*(c^4*d^
2 + c^2*d*e - 2*e^2)*Log[(12*c*d^2*(c*d - I*e*x + Sqrt[c^2*d - e]*Sqrt[d + e*x^2]))/(b*Sqrt[c^2*d - e]*(c^4*d^
2 + c^2*d*e - 2*e^2)*(I + c*x))])/Sqrt[c^2*d - e] + (b*(c^4*d^2 + c^2*d*e - 2*e^2)*Log[(12*c*d^2*(c*d + I*e*x
+ Sqrt[c^2*d - e]*Sqrt[d + e*x^2]))/(b*Sqrt[c^2*d - e]*(c^4*d^2 + c^2*d*e - 2*e^2)*(-I + c*x))])/Sqrt[c^2*d -
e])/(6*d^2)

________________________________________________________________________________________

Maple [F]  time = 0.837, size = 0, normalized size = 0. \begin{align*} \int{\frac{a+b\arctan \left ( cx \right ) }{{x}^{4}}{\frac{1}{\sqrt{e{x}^{2}+d}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctan(c*x))/x^4/(e*x^2+d)^(1/2),x)

[Out]

int((a+b*arctan(c*x))/x^4/(e*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(c*x))/x^4/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.8863, size = 1971, normalized size = 11.01 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(c*x))/x^4/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

[1/12*((b*c^2*d + 2*b*e)*sqrt(c^2*d - e)*x^3*log((c^4*e^2*x^4 + 8*c^4*d^2 - 8*c^2*d*e + 2*(4*c^4*d*e - 3*c^2*e
^2)*x^2 - 4*(c^3*e*x^2 + 2*c^3*d - c*e)*sqrt(c^2*d - e)*sqrt(e*x^2 + d) + e^2)/(c^4*x^4 + 2*c^2*x^2 + 1)) + (2
*b*c^3*d + 3*b*c*e)*sqrt(d)*x^3*log(-(e*x^2 + 2*sqrt(e*x^2 + d)*sqrt(d) + 2*d)/x^2) - 2*(b*c*d*x - 4*a*e*x^2 +
 2*a*d - 2*(2*b*e*x^2 - b*d)*arctan(c*x))*sqrt(e*x^2 + d))/(d^2*x^3), -1/12*(2*(b*c^2*d + 2*b*e)*sqrt(-c^2*d +
 e)*x^3*arctan(-1/2*(c^2*e*x^2 + 2*c^2*d - e)*sqrt(-c^2*d + e)*sqrt(e*x^2 + d)/(c^3*d^2 - c*d*e + (c^3*d*e - c
*e^2)*x^2)) - (2*b*c^3*d + 3*b*c*e)*sqrt(d)*x^3*log(-(e*x^2 + 2*sqrt(e*x^2 + d)*sqrt(d) + 2*d)/x^2) + 2*(b*c*d
*x - 4*a*e*x^2 + 2*a*d - 2*(2*b*e*x^2 - b*d)*arctan(c*x))*sqrt(e*x^2 + d))/(d^2*x^3), -1/12*(2*(2*b*c^3*d + 3*
b*c*e)*sqrt(-d)*x^3*arctan(sqrt(-d)/sqrt(e*x^2 + d)) - (b*c^2*d + 2*b*e)*sqrt(c^2*d - e)*x^3*log((c^4*e^2*x^4
+ 8*c^4*d^2 - 8*c^2*d*e + 2*(4*c^4*d*e - 3*c^2*e^2)*x^2 - 4*(c^3*e*x^2 + 2*c^3*d - c*e)*sqrt(c^2*d - e)*sqrt(e
*x^2 + d) + e^2)/(c^4*x^4 + 2*c^2*x^2 + 1)) + 2*(b*c*d*x - 4*a*e*x^2 + 2*a*d - 2*(2*b*e*x^2 - b*d)*arctan(c*x)
)*sqrt(e*x^2 + d))/(d^2*x^3), -1/6*((b*c^2*d + 2*b*e)*sqrt(-c^2*d + e)*x^3*arctan(-1/2*(c^2*e*x^2 + 2*c^2*d -
e)*sqrt(-c^2*d + e)*sqrt(e*x^2 + d)/(c^3*d^2 - c*d*e + (c^3*d*e - c*e^2)*x^2)) + (2*b*c^3*d + 3*b*c*e)*sqrt(-d
)*x^3*arctan(sqrt(-d)/sqrt(e*x^2 + d)) + (b*c*d*x - 4*a*e*x^2 + 2*a*d - 2*(2*b*e*x^2 - b*d)*arctan(c*x))*sqrt(
e*x^2 + d))/(d^2*x^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b \operatorname{atan}{\left (c x \right )}}{x^{4} \sqrt{d + e x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atan(c*x))/x**4/(e*x**2+d)**(1/2),x)

[Out]

Integral((a + b*atan(c*x))/(x**4*sqrt(d + e*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \arctan \left (c x\right ) + a}{\sqrt{e x^{2} + d} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(c*x))/x^4/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arctan(c*x) + a)/(sqrt(e*x^2 + d)*x^4), x)